Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Adv Res ; 49: 15-30, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36130683

RESUMO

INTRODUCTION: ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES: Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS: Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS: Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION: ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Zea mays , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Solubilidade , Pólen/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Lipídeos
2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012571

RESUMO

ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize.


Assuntos
Arabidopsis , Oryza , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina , Fertilidade/genética , Oryza/genética , Filogenia , Plantas , Zea mays/genética
3.
Mol Plant ; 14(12): 2000-2014, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34339895

RESUMO

Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kß1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions.


Assuntos
Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Homeostase , Transporte de Íons , Mutação , Tolerância ao Sal , Sódio/metabolismo
4.
Curr Biol ; 31(10): 2111-2123.e9, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33756108

RESUMO

The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP , Epiderme Vegetal , Proteínas de Plantas , Solanum lycopersicum , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Lipídeos de Membrana , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , /metabolismo
5.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568458

RESUMO

Pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG family are eukaryotic membrane proteins that pump an array of compounds across organelle and cell membranes. Overexpression of the archetype fungal PDR transporter Cdr1 is a major cause of azole antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR transporter has been solved. The objective of this project was to investigate the role of the 23 Cdr1 cysteine residues in the stability, trafficking, and function of the protein when expressed in the eukaryotic model organism, Saccharomyces cerevisiae The biochemical characterization of 18 partially cysteine-deficient Cdr1 variants revealed that the six conserved extracellular cysteines were critical for proper expression, localization, and function of Cdr1. They are predicted to form three covalent disulfide bonds that stabilize the large extracellular domains of fungal PDR transporters. Our investigations also revealed a novel nucleotide-binding domain motif, GX2[3]CPX3NPAD/E, at the peripheral cytosolic apex of ABCG transporters that possibly contributes to the unique ABCG transport cycle. With this knowledge, we engineered an "almost cysteine-less," yet fully functional, Cdr1 variant, Cdr1P-CID, that had all but the six extracellular cysteines replaced with serine, alanine, or isoleucine (C1106I of the new motif). It is now possible to perform cysteine-cross-linking studies that will enable more detailed biochemical investigations of fungal PDR transporters and confirm any future structure(s) solved for this important protein family.IMPORTANCE Overexpression of the fungal pleiotropic drug resistance (PDR) transporter Cdr1 is a major cause of antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR ABC transporter has been solved. Cdr1 contains 23 cysteines; 10 are cytosolic and 13 are predicted to be in the transmembrane or the extracellular domains. The objective of this project was to create, and biochemically characterize, CDR1 mutants to reveal which cysteines are most important for Cdr1 stability, trafficking, and function. During this process we discovered a novel motif at the cytosolic apex of PDR transporters that ensures the structural and functional integrity of the ABCG transporter family. The creation of a functional Cys-deficient Cdr1 molecule opens new avenues for cysteine-cross-linking studies that will facilitate the detailed characterization of an important ABCG transporter family member.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Candida albicans/genética , Candida albicans/metabolismo , Cisteína/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Cisteína/genética , Mutação , Dobramento de Proteína , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Biochim Biophys Acta Gen Subj ; 1865(1): 129769, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141061

RESUMO

BACKGROUND: Oxysterols, which are derivatives of cholesterol produced by enzymic or non-enzymic pathways, are potent regulators of cellular lipid homeostasis. Sterol homeostasis in the brain is an important area of interest with regards to neurodegenerative conditions like Alzheimer's disease (AD). Brain cells including neurons and astrocytes express sterol transporters belonging to the ABC transporter family of proteins, including ABCA1, ABCG1 and ABCG4, and these transporters are considered of interest as therapeutic targets. Although regulation of ABCA1 and ABCG1 is well established, regulation of ABCG4 is still controversial, in particular whether the transporter is an Liver X receptor (LXR) target. ABCG4 is thought to transport cholesterol, oxysterols and cholesterol synthesis intermediates, and was recently found on the blood brain barrier (BBB), implicated in amyloid-beta export. In this study, we investigate the regulation of ABCG4 by oxysterols, cholesterol-synthesis intermediates and cholesterol itself. METHODS: ABC transporter expression was measured in neuroblastoma and gliablastoma cell lines and cells overexpressing ABCG4 in response to synthetic LXR ligands, oxysterols and cholesterol-synthesis intermediates. RESULTS: In contrast to previous reports, ABCG4 expression was induced by a synthetic LXR ligand in U87-MG astrocytes but not in neuroblastoma and BBB endothelial cell lines. In addition, ABCG4 protein was stabilized by cholesterol as was previously shown for ABCG1. ABCG4 protein was furthermore stabilized by cholesterol-synthesis intermediates, desmosterol, lathosterol and lanosterol. CONCLUSIONS: These results identify new aspects of the post-translational control of ABCG4 that warrant further exploration into the role of this transporter in the maintenance of sterol homeostasis in the brain.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Receptores X do Fígado/metabolismo , Esteróis/metabolismo , Animais , Astrócitos/metabolismo , Células CHO , Linhagem Celular , Colesterol/metabolismo , Cricetulus , Regulação da Expressão Gênica , Humanos , Ligantes , RNA Mensageiro/metabolismo , Regulação para Cima
7.
Mol Carcinog ; 58(7): 1118-1133, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30834613

RESUMO

Multidrug resistance mediated by ATP-binding cassette (ABC) transporters remains a major impediment to cancer chemotherapy. In the present study, we documented that doxorubicin (Dox) or cisplatin-induced prostate cancer (PCa) chemoresistance is predominantly mediated by the induction of ABCG4 in androgen-independent PCa cells. Treatment of DU-145 or PC-3 cells with Dox significantly enhanced the expression of ABCG4 that resulted in the efflux of intracellular Dox. However, incubation of cells with ABCG4 short hairpin RNA resulted in a significant accumulation of Dox and sensitized cells to Dox-induced cytotoxicity. Interestingly, simvastatin synergistically potentiated Dox-induced cytotoxicity by inhibiting ABCG4 in DU-145 and DU-145 Doxres cells. Mechanistically, ABCG4 expression was regulated redox-dependently by intracellular glutathione (GSH) levels. Treatment of cells with N-acetylcysteine or simvastatin restored Dox-induced depletion of GSH levels that in turn inhibited ABCG4 levels. In addition, a reduction in GSH levels by Dox caused a nuclear factor-κB dependent enhancement of c-Myc expression, which led to cAMP-regulatory element-binding protein (CREB) activation. Furthermore, chromatin immunoprecipitation experiments revealed that Dox-induced CREB activation transcriptionally upregulates ABCG4 expression. These results were further confirmed in an in vivo PCa xenograft mice model. Combination of simvastatin and Dox significantly regressed the tumor growth and size with no noticeable Dox-induced cardiotoxic side effects. Intriguingly, DU-145 cells with stably depleted ABCG4 levels not only significantly delayed the development of the tumor but also greatly sensitized the tumor to a low dose of Dox that resulted in complete tumor regression. Collectively, this data reinforces a novel function of ABCG4 in Dox-mediated chemoresistance, and as a potential therapeutic target in drug-induced PCa chemoresistance.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Acetilcisteína/farmacologia , Animais , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Interferência de RNA , RNA Interferente Pequeno/genética , Sinvastatina/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Thorac Cancer ; 9(2): 208-217, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29235254

RESUMO

Radiation therapy is an important treatment modality for multiple thoracic malignancies. However, radiation-induced lung injury (RILI), which is the term generally used to describe damage to the lungs caused by exposure to ionizing radiation, remains a critical issue affecting both tumor control and patient quality of life. Despite tremendous effort, there is no current consensus regarding the optimal treatment approach for RILI. Because of a number of functional advantages, including self-proliferation, multi-differentiation, injury foci chemotaxis, anti-inflammation, and immunomodulation, mesenchymal stem cells (MSCs) have been a focus of research for many years. Accumulating evidence indicates the therapeutic potential of transplantation of MSCs derived from adipose tissue, umbilical cord blood, and bone marrow for inflammatory diseases, including RILI. However, reports have also shown that MSCs, including fibrocytes, lung hematopoietic progenitor cells, and ABCG2+ MSCs, actually enhance the progression of lung injuries. These contradictory results suggest that MSCs may have dual effects and that caution should be taken when using MSCs to treat RILI. In this review, we present and discuss recent evidence of the double-edged function of MSCs and provide comments on the prospects of these findings.


Assuntos
Lesão Pulmonar/patologia , Células-Tronco Mesenquimais/patologia , Neoplasias Induzidas por Radiação/patologia , Lesões por Radiação/patologia , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Lesão Pulmonar/genética , Neoplasias Induzidas por Radiação/genética , Qualidade de Vida , Lesões por Radiação/genética , Radiação Ionizante
9.
Am J Physiol Endocrinol Metab ; 313(4): E463-E472, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28420650

RESUMO

Human pregnancy is associated with enhanced de novo lipogenesis in the early stages followed by hyperlipidemia during advanced gestation. Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that stimulate de novo lipogenesis and also promote the efflux of cholesterol from extrahepatic tissues followed by its transport back to the liver for biliary excretion. Although LXR is recognized as a master regulator of triglyceride and cholesterol homeostasis, it is unknown whether it facilitates the gestational adaptations in lipid metabolism. To address this question, biochemical profiling, protein quantification, and gene expression studies were used, and gestational metabolic changes in T0901317-treated wild-type mice and Lxrab-/- mutants were investigated. Here, we show that altered LXR signaling contributes to the enhanced lipogenesis in early pregnancy by increasing the expression of hepatic Fas and stearoyl-CoA desaturase 1 (Scd1). Both the pharmacological activation of LXR with T0901317 and the genetic ablation of its two isoforms disrupted the increase in hepatic fatty acid biosynthesis and the development of hypertriglyceridemia during early gestation. We also demonstrate that absence of LXR enhances maternal white adipose tissue lipolysis, causing abnormal accumulation of triglycerides, cholesterol, and free fatty acids in the fetal liver. Together, these data identify LXR as an important factor in early-pregnancy lipogenesis that is also necessary to protect against abnormalities in fetoplacental lipid homeostasis.


Assuntos
Metabolismo dos Lipídeos , Lipogênese , Receptores X do Fígado/genética , Gravidez/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Western Blotting , Feminino , Feto/metabolismo , Perfilação da Expressão Gênica , Homeostase , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/metabolismo , Gravidez/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sulfonamidas/farmacologia , Receptor fas/genética
10.
Int J Biochem Cell Biol ; 81(Pt A): 105-111, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816548

RESUMO

Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by low platelet count and bleeding, and is usually triggered by viral infections. We previously reported that 14 viral microRNAs of megakaryocytes cultured with serum from patients with ITP, including ebv-miR-BART6, are up-regulated. Previous research has reported that ebv-miR-BART6 down-regulated the expression of miR-185-5p. We therefore predicted that the ABCG4 gene, which is highly expressed in megakaryocyte progenitor cells, is a direct target of miR-185-5p. We hypothesized that ebv-miR-BART6 may play a role in development and differentiation of megakaryocytes. First, we verified the negative regulation of ABCG4 by miR-185-5p through luciferase assay analysis. Second, after transfection of ebv-miR-BART6 into megakaryocytes developing from normal cord blood mononuclear cells (MNCs), we found that the level of miR-185-5p in the ebv-miR-BART6 group was reduced to almost a third of that in the control groups, accompanied by up-regulation of ABCG4 at both the mRNA and protein levels. Meanwhile, proliferation of megakaryocytes was significantly repressed in the ebv-miR-BART6 group compared with the blank and negative control groups (14.89%±3.13%, 34.15%±2.42% and 30.96%±4.37%, respectively; P<0.001). Our results further revealed that ebv-miR-BART6 inhibited megakaryocyte colony unit formation, decreased CD41 expression and inhibited megakaryocyte polyploidization. These data suggest a new paradigm to explain the mechanisms underlying ITP, involving the regulation of megakaryocytopoiesis by viral microRNAs through the intronic hsa-microRNA.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica/genética , Herpesvirus Humano 4/genética , Megacariócitos/citologia , Megacariócitos/metabolismo , MicroRNAs/genética , RNA Viral/genética , Regiões 3' não Traduzidas/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Humanos , Gravidez
11.
Sci Rep ; 6: 32105, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27601313

RESUMO

Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17ß-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.


Assuntos
Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transportador 1 de Cassete de Ligação de ATP/biossíntese , Transportador 1 de Cassete de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico/efeitos dos fármacos , Colesterol/análise , Colesterol/sangue , Ésteres do Colesterol/metabolismo , Dieta Ocidental , Esterificação/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Fezes/química , Fulvestranto , Humanos , Lipoproteínas LDL/metabolismo , Fígado/química , Fígado/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloridrato de Raloxifeno/farmacologia , Células THP-1 , Tamoxifeno/farmacologia , Toremifeno/farmacologia
12.
PLoS One ; 11(5): e0155400, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196068

RESUMO

ATP-binding cassette G1 (ABCG1) and ABCG4, expressed in neurons and glia in the central nervous system, mediate cholesterol efflux to lipid acceptors. The relationship between cholesterol level in the central nervous system and Alzheimer's disease has been reported. In this study, we examined the effects of ABCG1 and ABCG4 on amyloid precursor protein (APP) processing, the product of which, amyloid ß (Aß), is involved in the pathogenesis of Alzheimer's disease. Expression of ABCG1 or ABCG4 in human embryonic kidney 293 cells that stably expressed Swedish-type mutant APP increased cellular and cell surface APP levels. Products of cleavage from APP by α-secretase and by ß-secretase also increased. The levels of secreted Aß, however, decreased in the presence of ABCG1 and ABCG4, but not ABCG4-KM, a nonfunctional Walker-A lysine mutant. In contrast, secreted Aß levels increased in differentiated SH-SY5Y neuron-like cells in which ABCG1 and ABCG4 were suppressed. Furthermore, Aß42 peptide in the cerebrospinal fluid from Abcg1 null mice significantly increased compared to the wild type mice. To examine the underlying mechanism, we analyzed the activity and distribution of γ-secretase. ABCG1 and ABCG4 suppressed γ-secretase activity and disturbed γ-secretase localization in the raft domains where γ-secretase functions. These results suggest that ABCG1 and ABCG4 alter the distribution of γ-secretase on the plasma membrane, leading to the decreased γ-secretase activity and suppressed Aß secretion. ABCG1 and ABCG4 may inhibit the development of Alzheimer's disease and can be targets for the treatment of Alzheimer's disease.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Lisina , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Interferência de RNA
13.
Plant Cell ; 28(5): 1163-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27102667

RESUMO

The sesquiterpenoid capsidiol is the major phytoalexin produced by Nicotiana and Capsicum species. Capsidiol is produced in plant tissues attacked by pathogens and plays a major role in postinvasion defense by inhibiting pathogen growth. Using virus-induced gene silencing-based screening, we identified two Nicotiana benthamiana (wild tobacco) genes encoding functionally redundant full-size ABCG (PDR-type) transporters, Nb-ABCG1/PDR1 and Nb-ABCG2/PDR2, which are essential for resistance to the potato late blight pathogen Phytophthora infestans Silencing of Nb-ABCG1/2 compromised secretion of capsidiol, revealing Nb-ABCG1/2 as probable exporters of capsidiol. Accumulation of plasma membrane-localized Nb-ABCG1 and Nb-ABCG2 was observed at the site of pathogen penetration. Silencing of EAS (encoding 5-epi-aristolochene synthase), a gene for capsidiol biosynthesis, reduced resistance to P. infestans, but penetration by P. infestans was not affected. By contrast, Nb-ABCG1/2-silenced plants showed reduced penetration defense, indicating that Nb-ABCG1/2 are involved in preinvasion defense against P. infestans Plastidic GGPPS1 (geranylgeranyl diphosphate synthase) was also found to be required for preinvasion defense, thereby suggesting that plastid-produced diterpene(s) are the antimicrobial compounds active in preinvasion defense. These findings suggest that N. benthamiana ABCG1/2 are involved in the export of both antimicrobial diterpene(s) for preinvasion defense and capsidiol for postinvasion defense against P. infestans.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , /microbiologia , Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA